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This study explored the potential of mid-infrared spectroscopy (MIR) with partial least-squares (PLS)
analysis to predict sorption coefficients (Kd) of pesticides in soil. The MIR technique has the advantage
of being sensitive to both the content and the chemistry of soil organic matter and mineralogy, the
important factors in the sorption of nonionic pesticides. MIR spectra and batch Kd values of atrazine
were determined on a set of 31 soil samples as reference data for PLS calibration. The samples,
with high variability in soil organic carbon content (SOC), were chosen from 10 southern Australian
soil profiles (A1, A2, B, and C in one case). PLS calibrations, developed for the prediction of Kd from
the MIR spectra and reference Kd data, were compared with predictions from Koc-based indirect
estimation using SOC content. The reference Kd data for the 31 samples ranged from 0.31 to 5.48
L/kg, whereas Koc ranged from 30 to 680 L/kg. Both coefficients generally increased with total SOC
content but showed a relatively poor coefficient of determination (R2 ) 0.53; P > 0.0001) and a high
standard error of prediction (SEP )1.22) for the prediction of Kd from Koc. This poor prediction
suggested that total SOC content alone could explain only half of the variation in Kd. In contrast, the
regression plot of PLS predicted versus measured Kd resulted in an improved correlation, with R2 )
0.72 (P > 0.0001) and standard error of cross-validation (SECV) ) 0.63 for three PLS factors. With
the advantages of MIR-PLS in mind, (i) more accurate prediction of Kd, (ii) an ability to reflect the
nature and content of SOC as well as mineralogy, and (iii) high repeatability and throughput, it is
proposed that MIR-PLS has the potential for an improved and rapid assessment of pesticide sorption
in soils.
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INTRODUCTION

The current standard technique of estimating the sorption
coefficient of an organic compound in soil using the Koc

approach (1–3) is often inadequate (4–6), as it is based on soil
organic carbon content (SOC) alone. It does not take into
account the chemical nature of the soil organic matter (SOM)
or other contributing factors to sorption of pesticides. Koc as an
extrapolation parameter is commonly used, not because it is
accurate but simply because of the lack of a suitable alternative.
Numerous studies have reported large variations in Koc values
for a specific pesticide in soils from the same or different regions
(7). Some 35 years ago, Hamaker and Thompson (5) compiled
large data sets and cautioned against treating Koc or Kom as a

constant due to their large variation among soils. This large
variation has been attributed to the differences in the affinities
of pesticide molecule for SOC in various soils (8–11), the
contribution of minerals to sorption (12), and organo-mineral
interactions in soils that could block sorption sites (13). These
effects may be quantified separately by laboratory analyses but
these can be time-consuming and expensive. Alternatively, near-
infrared (NIR) and mid-infrared (MIR) spectroscopy can provide
soil compositional information regarding the nature and content
of both organic and mineral matter and, thus, offer an attractive
alternative method to overcome problems inherent in the Koc

method.

Infrared spectroscopy is now increasingly being used as a
rapid method for soil analysis in place of the more traditional
laboratory methods. Bengtsson et al. (14) found that NIR
spectroscopy could be used to estimate >80% of the sorption
of lindane and linuron in a set of 27 soils. NIR spectral peaks,
however, are often difficult to interpret due to extensive peak
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overlap of the overtone and combination vibrations and can be
insensitive to some common soil components such as quartz.
Mid-infrared (MIR) spectroscopy has also been used for many
years for qualitative soil analysis (15). The MIR frequencies in
soils are characterized by relatively intense fundamental vibra-
tions of organic functional groups involving -CH, -OH, -NH,
-CO, -CN, and -CC bonds within alkyl, hydroxyl, amide,
carboxyl, and aromatic groups in the soil organic matter (16)
and also by -Fe-O, Si-O, and Al-OH groups characteristic
of the mineral components (15, 17, 18). Each molecular group
gives a multiplicity of fundamental vibrations as well as some

overtones and combinations, the specific frequencies being
dependent on interactions between molecules and on the
molecular environment. The complexity of the spectral signa-
tures in the MIR and the overlap of the organic peaks with those
of the mineral constituents in the soil have, however, been seen
as an impediment to the use of MIR for SOM studies. Further
research, however, has indicated that by using the diffuse
reflectance infrared Fourier transform (DRIFT) technique to
derive soil spectra (with minimum sample preparation) coupled

Table 1. Taxonomical (USDA Soil Taxonomy 1994a) Classification and Selected Physicochemical Properties of the 31 Soils Used in the Study

soil profile classification
depth
(cm)

SOC
(g/kg)

pH
(1:5 0.01
M CaCl2)

sand
(g/kg)

silt
(g/kg)

clay
(g/kg)

clay
mineralsb

Kd

(L/kg)
Koc

(L/kg)

1 1413A1 Aquic Natrixeralfs, very-fine, mixed, mesic 0–10 13.3 5.10 910 60 30 K < I < Q < RIM 1.16 87
2 1413A2 10–50 3.5 5.15 920 45 35 0.31 89
3 1413B 50–105 3.0 4.80 210 40 750 0.35 117
4 1416A1 Aquic Natrixeralfs, very-fine, mixed, mesic 0–15 22.8 4.40 700 190 110 K < V < Q < RIM 1.81 79
5 1416A2 15–50 5.0 5.87 515 95 390 0.34 68
6 1416B 50–100 2.0 7.80 500 50 450 0.41 205
7 1418A1 Albic Natraqualfs, fine-loamy, mixed, mesic 0–10 26.0 5.10 860 100 40 K < I < Q < V 2.59 100
8 1418A2 10–30 1.0 5.30 850 100 50 0.54 540
9 1419A1 Albic Natraqualfs, fine-loamy, mixed, mesic 0–10 15.0 5.10 890 70 40 K < I < Q < V 3.39 226

10 1419A2 10–30 1.0 5.40 850 80 60 0.56 560
11 1419B 30–70 3.75 5.10 500 10 470 0.65 173
12 1419C 70–170 1.0 6.80 610 70 320 0.64 640
13 1422A1 Aquic Natrixeralfs, very-fine, mixed, mesic 0–10 38.3 4.80 790 90 110 K < RIM ) V < I < Q 2.48 65
14 1422A2 10–30 9.0 4.70 760 70 170 0.98 109
15 1422B 30–75 4.2 5.28 275 55 670 0.40 95
16 1428-1A1 Typic Albaqualfs, fine, mixed, mesic 0–10 75.2 4.60 870 80 50 K < I < Q 4.52 60
17 1428-1A2 10–20 8.0 4.40 900 60 50 4.58 573
18 1428-1B 20–60 5.5 4.25 520 100 380 1.48 269
19 1428-2A1 Typic Albaqualfs, fine, mixed, mesic 0–10 47.0 4.60 880 80 50 K < I < Q 4.52 96
20 1428-2B 20–40 1.0 4.40 540 95 360 0.68 680
21 1432A1 Typic Glossaqualfs, fine, mixed, mesic 0–10 30.7 4.40 800 130 70 K < V ) I < RIM > Q 0.93 30
22 1432A2 10–30 3.0 4.90 840 120 40 0.38 127
23 1432B 30–100 1.0 5.46 490 110 400 0.54 540
24 1433A2 Plinthic Haploxeralfs, fine, mixed, mesic 10–30 20.0 4.40 650 160 190 K < I ) RIM ) V ) Q (minor) 2.45 123
25 1433B 30–100 4.6 4.81 520 240 340 1.08 235
26 1437A1 Typic Natrixeralfs, fine, mixed, mesic 0–15 16.2 4.30 920 40 40 K ) RIM > I < Q 2.45 151
27 1437A2 15–65 1.2 4.97 900 36 54 0.52 433
28 1437B 65–100 2.0 6.31 620 30 350 0.45 225
29 1440A1 Arenic Albaqualfs, fine, mixed, mesic 0–10 38.9 4.20 920 50 30 V ) RIM > K < I < Q 1.46 38
30 1440A2 10–50 2.0 4.60 915 55 30 0.34 170
31 1440B 50–100 4.0 5.20 620 40 320 0.53 133

a Soil Survey Staff. Keys to Soil Taxonomy, 5th ed.; SMSS Technical Monograph 19; Virginia Polytechnic Institute and State University: Blacksburg, VA, 1994; 422 pp.
b K, kaolinite; I, illite; Q, quartz; V, vermiculite; RIM, randomly interstratified minerals (only measured for surface horizons).

Figure 1. Relationship between atrazine sorption distribution coefficients
(Kd) and the content of soil organic carbon (SOC) in 31 soils. A low
coefficient of determination (R2 ) 0.53) and a high relative standard error
(SE ) 1.22) were noted for the best fit line.

Figure 2. Partial least-squares score plot for sorption coefficients in 31
soils. Three soils from profile 1428 stands out as a different cluster among
the 31 soils used here. Vectors show the tendency of different soil horizon
groupings.
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with chemometrics application, a quantitative soil analysis can
be made (19).

During the past decade or so, partial least-squares (PLS)
regression has been used to reduce the complexity of the infrared
spectra into much simpler orthogonal factor descriptors for
predictive model development. PLS regression is a bilinear
modeling method in which spectral and soil property reference
data are combined into a small number of “latent” variables
(PLS loadings) and scaling terms (PLS scores). The procedure
for PLS analysis adopted here is similar to that was described
by Haaland and Thomas (20) and later reported for soil analysis
by MIR spectroscopy (21) and PLS analysis (MIR-PLS). Both
NIR and MIR spectroscopy with PLS analyses have been
applied effectively in estimating soil properties, for example,
in determining total SOC content and SOC fractions (21–23),
but the potential of MIR spectroscopy with PLS regression
(MIR-PLS) for the assessment of pesticide sorption into soils
is yet to be fully explored.

In this study we explored the potential application of MIR-
PLS analysis as an efficient predictive tool for atrazine sorption
using measured reference sorption data and MIR-DRIFT spectra
on a set of surface and subsurface samples sourced from Pinus
radiata plantation soils in southern Australia. These soils had
similar mineralogical composition, essentially sand and kaolinite/
smectite clays, with widely varying SOC contents. PLS calibra-
tions were developed for the prediction of Kd from MIR spectra
and reference Kd values in comparison to predictions from a
Koc model derived from total SOC content.

MATERIAL AND METHODS

Soils and Atrazine Herbicide. Soil samples were collected from
10 different soil profiles from P. radiata (D. Don) plantations in the
Warren reservoir catchment (113 km2 in Adelaide hills, South
Australia). Soil samples were collected in triplicate for sorption and
degradation studies in the laboratory from the A1, A2, and B horizons
in the 10 profiles: A1 for the surface sandy organic-rich layer, A2 for
the subsurface layer, and B for the clay-rich layer for 9 profiles, with
an additional C layer for one sample containing weathered parent rock

material for the 10th profile. Thus, in total, 31 different soil samples
were collected in triplicate for this study. The soils were predominantly
acidic sands with kaolinite, illite, and randomly interstratified mineral
(RIM) clay mineralogy (Table 1). After collection, the soil replicates
were bulked for each horizon and thoroughly mixed by hand. The
samples from each horizon were oven-dried at 40 °C for 4 days for
use in the sorption study, followed by grinding, homogenization, and
“dry” sieving through a 2 mm metal sieve. A description of their soil
properties and taxonomical classification is presented in Table 1.

The herbicide atrazine (2-chloro-4-ethylamino-6-isopropylamine-s-
triazine) was used as a test compound in this study for a number of
reasons: (i) it is a widely used compound commonly detected in surface
and ground waters; (ii) it is relatively stable and easy to analyze; (iii)
a lot of literature data on its sorption properties is available for
comparison; and (iv) its sorption has been reported to be affected by
both the amount and the chemistry of SOC (24). According to Tomlin
(25), atrazine has a molecular weight of 215.7, vapor pressure of 3.85
× 10-2 mPa (25 °C), solubility in water of 33 mg L-1 (20 °C), and
log Kow ) 2.5 (25 °C) and is weakly basic with a pKa value of 1.7
(21 °C).

Atrazine Sorption. Atrazine sorption was determined by spiking
an aliquot of 5 g of soil with 5-20 µg of atrazine in 10 mL of solution
containing 0.01 M CaCl2 and equilibrating the slurry overnight (16 h)
in an end-over-end shaker using Teflon-capped centrifuge tubes.
Equilibrations at all concentrations were run in triplicate. The shaking
time was chosen following a sorption kinetics experiment using 1.0
mg/L of atrazine and equilibrating it at the same soil/solution ratio for
0.25,1, 3, 8, 16, and 24 h shaking times. Following equilibration, the
supernatant solution was decanted and passed through a 0.45 µm nylon
membrane syringe filter into a vial. The analysis for atrazine was
undertaken on an Agilent 1100 series high-performance liquid chro-
matograph (HPLC) fitted with a diode array detector and an SGE C18

RS column (250 × 4.6 mm, 5 µm). The mobile phase used was 60:40
methanol/water (HPLC grade methanol and Milli-Q water), an injection
volume of 20 µL, and a detection wavelength of 220 nm with a detection
limit of 0.1 mg/L. Total carbon concentration was determined by dry
combustion using a Leco CR-12 Carbon Analyzer (LECO Corp. St.
Joseph, MI). Values of Kd were determined from the data by fitting to
a linear form of isotherm, whereas Koc was determined from Kd divided
by the mass fraction of SOC. In some cases when nonlinearity was
significant, the lowest concentration was used to calculate the Kd as
the effect of nonlinearity increases with solution concentration. Results
of atrazine sorption Kd, Koc, and SOC for the soil samples are presented
in Table 1.

Mid-Infrared Spectroscopy. Portions of soil sample (100 mg), from
the composited and ground soil samples for each horizon used for
sorption study, were analyzed as neat powders using the MIR-DRIFT
technique. Spectra were scanned in a rapid scanning Fourier transform
spectrometer (Bio-Rad 175C), with 60 co-added scans collected over
60 s for each sample. The instrument was equipped with an extended
range KBr beam splitter and DTGS detector, with a spectral range of
8300–470 cm-1 at 8 cm-1 resolution. Spectral frequencies were
referenced against an internal He-Ne laser to give a precision and
accuracy of 0.01 cm-1. The DRIFT accessory (DRS-3SO, Harrick)
used an off-axis geometry and was set up for maximum energy without
removal of stray specular radiation. Only the MIR portion of the spectra
between 4000 and 500 cm-1 was used for the chemometrics analysis.
An initial KBr blank spectrum was run to test the spectrometer
performance and as a reference for calculating the sample spectra in
absorbance units. Sample absorbance spectra were directly scanned into
Grams/AI SPC format (Thermo Electron Corp.).

Partial Least-Squares Analysis. Spectra were imported into the
PLSplus/IQ software together with the corresponding analytical data
(Kd, SOC, and Koc). The spectra were mean-centered and preprocessed
with automatic baseline correction and the optimum spectral ranges
selected for training the PLS models. PLS calibration models to predict
atrazine Kd were developed using PLSplus/IQ (Thermo-Electron Corp.)
software. PLS model training was carried out by “leave-one-out” cross-
validation, where each sample is removed in turn from the set and its
value predicted from models based on the remaining samples. Training
continued for the preset number of PLS terms (factors) until the

Figure 3. Mid-infrared spectra of different horizons of the soil profiles
studied. Spectra are shown averaged from the (a) A1, (b) A2, and (c) B
horizons and (d) the single C horizon.

Figure 4. PLS loading weights 1 and 2 for sorption coefficients (Kd) of
atrazine.
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minimum prediction residual error sum of squares (PRESS) was
reached. The number of factors required to reach this minimum was
taken as the optimum dimensionality of the model. The first few loading
weights account for most of the variation in the MIR-PLS model and
express the component spectra most related to the analyte of interest.
As well as PLS loadings, the first few PLS loading weights, somewhat
similar to “pure component” spectra of the analyte, and the scores for
the first two PLS components were used to describe the variation
between samples in the model. Moreover, principal component analysis
(PCA) was performed to show the clustering or distribution of sample
spectra in a two-dimensional score versus score plot.

The resulting prediction model generally requires validation using
a set of independent unknown samples. However, a separate validation
set was not available, and the size and nonuniformity of the calibration
set did not allow us to perform a thorough independent validation
process by dividing the calibration set into random sets of calibration
and validation samples. In this study, therefore, we could develop the
prediction model only through cross-validation, which involves a self-
validation process. Further improvement and validation of the model
have been left for follow-up studies, but, in the present study the
predictive ability of the calibration models was assessed by calculating
the coefficient of determination (R2) and the standard error of cross-
validation (SECV) calculated as

SECV)�∑ di

n

where di ) ri - pi is the difference between reference and model
predicted data for sample i and n is the number of samples in the
calibration set (26).

RESULTS AND DISCUSSION

The sorption data were fitted to a linear sorption isotherm to
obtain sorption coefficients (Kd), which in most cases described
the data well (R2 > 0.94). In six samples the nonlinearity was
obvious, and in these cases the lowest concentration was used
to calculate the Kd. Laboratory-measured Kd values (reference)
were in the range from 0.31 to 5.48 L/kg for the 31 soils (Table
1). The Kd values generally increased with total SOC content
(Figure 1), but with a low coefficient of determination (R2 )
0.527; P < 0.0001) with standard error of estimation ) 1.22.
This regression showed that carbon content alone could explain
only half the variance in Kd. The distribution of Koc data for
this data set (Table 1) showed a wide range from 30 to 680, a
23-fold variation among soils from a single land use, and
supported the poor regression between Kd and low SOC values.

Atrazine is a very widely studied compound with a widely used
average value of Koc, according to a large published database,
of 100 L/kg (27). The Kd values for these soils were estimated
using this Koc value from the literature. Values for Koc from
only about one-third of our soil samples were somewhat closer
(within 20%) to this average value, and the majority of samples
showed a large difference. Several previous studies also reported
such a wide variation in the Koc values of atrazine (e.g., see
refs 24 and 28).

The MIR spectra of the soils showed large variations in
spectral patterns, as expected from the large variation in carbon
content, soil compositions, and other properties. PLS regression
analysis for Kd prediction resulted in good separation of the
PLS scores for the B horizon spectra from those of the A1 and
A2 horizons. Clustering between the two groups is depicted in
the score versus score plot in Figure 2. Some separation of the
scores for A1 and A2 samples, and particularly for all horizons
belonging to sample 1428, occurred along the score 1 axis.
Spectra of the soils averaged from the A1, A2, and B horizons
and the single C horizon are presented in Figure 3. The spectra
suggest that high organic matter in the A1 horizon was
characterized by peaks at 2930–2850 cm-1 due to aliphatic
-CH2 stretching vibrations. These organic peaks were barely
observed in the A2 horizon and were absent in the B and C
horizons in accord with the known reference values of SOC
concentration and clay contents. Peaks in Figure 3 were clearly
evident for quartz and also for kaolinite, illite, and smectite
probably occurring in RIM structures (17). Quartz (as sand)
usually dominates Australian soils, resulting in many strong MIR
diffuse reflectance peaks in the 2000–1800 cm-1 region, and
are often overlapped with other clay mineral and soil organic
matter peaks in the spectral region from 1400 to 500 cm-1 (29).
It appeared that the quartz peaks, strongest in the A1 horizon,
were reduced in intensity for the A2, B, and C horizons, being
replaced by strong water peaks near 3400 and 1630 cm-1 due
to water within illite/smectite in RIM clay interlayer structures.
Strong and sharp kaolinite peaks near 3695–3620 cm-1 were
also reduced in the C horizon.

The first two PLS loading weights are illustrated in Figure
4. These represent the spectra of soil components that correlated
most strongly with Kd, with additional soil components con-
tributing in the subsequent loading weights. As depicted in
Figure 4, the first PLS loading weight was characterized by
organic matter, with peaks in loading weight 1 observed at

Figure 5. MIR-PLS prediction regression of sorption coefficients (Kd) for 31 soils (A) and Koc predicted sorption coefficients (B). The MIR-PLS used
three factors (organic matter, mineralogy, and quartz particle size), which significantly improved R2 ) 0.72 compared to a R2 ) 0.52 when only organic
matter factor was taken into account.
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2917–2851 cm-1 (alkyl -CH2), 1730 cm-1 (carboxylic acid
-COOH), and 1651 and 1555 cm-1 (amide -CO-NH).
Loading weight 2 was correlated with both SOC (positive) and
quartz (negative). The third loading weight (not shown) featured
a negative peak due to clay at 1030 cm-1 and to clay-water
near 1630 cm-1.

Figure 5 shows the cross-validation regression plot of PLS
predicted versus reference values of Kd, with an R2 ) 0.72 and
SECV ) 0.63. A single PLS factor, characterized mostly by
peaks in the first loading weight due to organic matter, gave an
R2 ) 0.22. Including a second factor, characterized by organic
matter plus mineral (quartz), gave an improved R2 of 0.67.
Adding the third factor, mostly peaks due to clay and some
quartz band distortion due to variations in quartz particle size,
improved the regression further, giving an R2 ) 0.72. The MIR-
PLS prediction not only achieved a better R2 than that observed
for the Koc model, but its SECV was also lower (Figure 5),
despite the compositional heterogeneity between the surface and
subsoils (Figure 2). It is likely that separation of the data set
surface and subsoils could further improve the prediction by
producing a more robust PLS model based on more relevant
sample compositional characteristics, although in this instance
there are insufficient numbers of samples to form further data
sets. These observations are supported by results from previous
studies involving NIR spectroscopy in predicting the leachability
and sorption of pesticides (14, 30).

The correlation between MIR spectra and Kd can be improved
in a number of ways. First, the current PLS model is significantly
better than the Kd versus SOC correlation despite the fact that
surface and subsurface soils formed different clusters in the
PCAs. Improved predictions may be possible using soils more
closely matched according to the MIR spectra and hence only
either A, B, or C horizons. Second, in the present study the
intention was to seek a “proof of concept” and to simply explore
if MIR can potentially be used to predict the Kd of pesticides.
Only a simple PLS model was used to predict Kd from MIR.
The data suggest that a nonlinear regression method, rather than
the usual linear PLS algorithm, could potentially further improve
the prediction.

The MIR-PLS method has been shown in this study to provide
an estimate of pesticide sorption more accurate than that
achieved by the current method of assessment via Koc. Further-
more, the MIR-PLS method has the advantage of providing a
more direct estimation involving fewer steps than the indirect
estimate via Koc and thus reducing errors in the measurement
of SOC and Kd, resulting in a cost-effective and repeatable
technique for fast throughput of samples.

Considering the high repeatability of MIR-PLS, its integrative
ability to characterize both the concentration and nature of
organic and mineral materials in soil (all of which are potential
important for pesticide sorption measurement), and a reasonable
correlation between pesticide sorption and IR spectral properties,
there is a good case for using MIR-PLS as an assessment tool
for pesticide sorption. This is particularly so in the cases when
sorption coefficients are needed for a first-tier assessment or
for relative risk assessment between different compounds or
soils. Given that the MIR-PLS method is increasingly being
used to characterize soils, especially for SOC concentration
(needed for the Koc model anyway), it is appropriate that the
large amount of compositional information that the MIR spectra
technique is capable of simultaneously extracting with no extra
cost is utilized for Kd determinations. As a next step, calibration
models should be developed from a large number of widely
variable soils, possibly employing improved regression algo-

rithms and validated with an independent set of data. In the
first instance, the technique should be tested on a range of
compounds and applied to a larger number of surface soils.
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